
Not sure if I have to check out this problem

Or just wait for the customer feedback

How to Narrow Down What to Test

@ZsoltFabok
http://zsoltfabok.com/

#xp2013
http://xp2013.org/

by
Zsolt Fabok
2013-06-05

http://zsoltfabok.com
http://zsoltfabok.com

@ZsoltFabok
or

#xp2013

“I get paid for code that works, not for tests, so my
philosophy is to test as little as possible to reach a given
level of confidence (I suspect this level of confidence is
high compared to industry standards, but that could just
be hubris). If I don’t typically make a kind of mistake (like
setting the wrong variables in a constructor), I don’t test
for it. I do tend to make sense of test errors, so I’m extra
careful when I have logic with complicated conditionals.
When coding on a team, I modify my strategy to carefully
test code that we, collectively, tend to get wrong.”

Kent Beck - September 10, 2010

quote: http://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests/153565#153565

I’d like to [re]start working on this
legacy application

My “where to start” list

#1 Determine which parts of
the code are really used

The good old Standish Group Study

7%

13%

16%19%

45%
Always
Often
Sometimes
Rarely
Never

The goal is to find those features which are
always or often used.

By studying coverage, access logs,
traces, web analytics, heat maps, etc.

Let’s have a look at the coverage
(using instrumented class files):

% cp jetty/cobertura.ser web.ser
% cp uploader/cobertura.ser ant.ser
% ant usage_coverage

usage_coverage:
[cobertura-merge] Cobertura: Loaded information on 12 classes.
[cobertura-merge] Cobertura: Loaded information on 11 classes.
[cobertura-merge] Cobertura: Saved information on 16 classes.
[cobertura-report] Cobertura: Loaded information on 16 classes.
[cobertura-report] Report time: 600ms

BUILD SUCCESSFUL
Total time: 2 seconds

Example #1: overview

Example #2: execution

not even
executed

Example #3: number of execution

.NET wins

FileBasedMetadata (usage)

FileHelper (usage)

#2 Find out which parts of
the code change often

By checking how many times a file has
been committed into VCS:

% ./git_stat.sh

14, VerifierTask.java
13, index.jsp
11, FileBasedUserHome.java
11, FileBasedUser.java
11, FileBasedContentTracker.java
 8, IntegrityCheckTask.java
 7, MailSender.java

FileBasedMetadata (usage)

FileHelper (usage)

VerifierTask (changes)

index.jsp (changes)

FileBasedUserHome (changes)

#3 Determine which part of
the code changes data

Code review
“You have exactly 1 minute to explain to me
what that method does!”

FileBasedMetadata (usage)

FileHelper (usage, review)

VerifierTask (changes)

index.jsp (changes)

FileBasedUserHome (changes, review)

FileBasedContentTracker (review)

Exercise 3: Code Review

#4 Determine where the code
is most likely going to fail
(e.g. with static code checkers)

PMD is not helpful at the moment,
but good to know about it

FileBasedMetadata (usage)

FileHelper (usage, review, bugs)

VerifierTask (changes)

index.jsp (changes)

FileBasedUserHome (changes, review)

FileBasedContentTracker (review, bugs)

HarversterTask (bugs)

FileBasedContentTracker.fsck() (crap4j)

FileBasedContentTracker.gc() (crap4j)

VerifierTask.execute() (crap4j)

Let’s order our list and
we are done!

FileBasedMetadata (usage)

FileHelper (usage, review, bugs)

VerifierTask (changes)

index.jsp (changes)

FileBasedUserHome (changes, review)

FileBasedContentTracker (review, bugs)

HarversterTask (bugs)

FileBasedContentTracker.fsck() (crap4j)

FileBasedContentTracker.gc() (crap4j)

VerifierTask.execute() (crap4j)

Now we know where to start, and
now let’s talk about how to start.

Gaining 30% coverage in 2 minutes:

public class CheaterTest {
 @Test
 public void shouldIncreaseTheCoverage() {
 HarvesterTask harvester = new HarvesterTask();
 Project project = new Project();
 project.setBaseDir(new File("."));
 harvester.setProject(project);
 harvester.setRepository("../repository");
 harvester.setHistory("history");
 harvester.setTemplate("templates");
 harvester.execute();
 }
}

Covered code != Tested code

So, you start with an assertion:

public class FileHelperTest {
 @Test
 public void shouldReturnTheContentOfAFile() throws IOException {
 assertEquals("", FileHelper.getFileContent(null));
 }
}

➡ The ‘assertEquals’ makes sure that your test actually
does something

➡ The ‘null’ parameter - along with the
NullPointerException - will show you where to continue

First test case is done:

public class FileHelperTest {
 @Test
 public void shouldReturnTheContentOfAFile() throws IOException {
 File input = File.createTempFile("foo", "bar");
 assertEquals("", FileHelper.getFileContent(input));
 }
}

➡ Now the test is green, let’s continue with a more
meaningful test case

Now we have two test cases:

public class FileHelperTest {
 @Test
 public void shouldReturnTheContentOfAFile() throws IOException {
 File input = File.createTempFile("foo", "bar");
 assertEquals("", FileHelper.getFileContent(input));
 }

 @Test
 public void shouldReturnTheContentOfAFile() throws IOException {
 File input = File.createTempFile("foo", "bar");
 new FileOutputStream(input).write("something".getBytes());
 assertEquals("something", FileHelper.getFileContent(input));
 }
}

➡ Test method names remains the same until the body is
filled properly

And we are done (assertion + coverage):
public class FileHelperTest {
 private File input;

 @Before
 public void setUp() throws IOException {
 input = File.createTempFile("foo", "bar");
 }

 @Test
 public void shouldReturnAnEmptyStringForAnEmptyFile() throws IOException {
 assertEquals("", FileHelper.getFileContent(input));
 }

 @Test
 public void shouldReturnTheContentOfAFile() throws IOException {
 setInputFileContent("something");
 assertEquals("something", FileHelper.getFileContent(input));
 }

 private void setInputFileContent(String content) throws IOException {
 new FileOutputStream(input).write("something".getBytes());
 }
}

Well tested code

Well tested code everywhere

What about web applications?
(I’ll use a ruby on rails example, but the principles apply to other frameworks as well)

#2 Find out which parts of the code change
often (a.k.a VCS statistics)

#3 Determine which part of the code
changes data (a.k.a code review)

Points

are just the same.

and

A large variety of tools are available for:

#4 Determine where the code is most likely
going to fail (a.k.a static code checkers)

% gem install rails_best_practices
% rails_best_practices -html .

Everything is nice and straightforward
until now, but the last remaining point

is tricky:

#1 Determine which parts of the code
are really used (a.k.a. coverage)

We can have coverage data in Ruby on Rails, too:
~/Temp/repos/sample_app % gem install simplecov
~/Temp/repos/sample_app % cat script/rails
#!/usr/bin/env ruby

require 'simplecov'
SimpleCov.start do
 add_group "Models", "app/models"
 add_group "Controllers", "app/controllers"
end

APP_PATH = File.expand_path('../../config/application', __FILE__)

rest of the script/rails script

There is only one problem: the application
must be stopped in order to get the report,
which is not really efficient and user friendly.

Fortunately, we can use a metric called
‘funnel’:

1. This is a huge lost in visitors,
would be good to know why.

2. Users visit this page more
often than the other page.

Slides: http://zsoltfabok.com/speaking/

Code: https://github.com/ZsoltFabok/
arithmetic.expression.evaluator/tree/xp2013

Thank you very much for your attention!

http://zsoltfabok.com/ @ZsoltFabok

http://zsoltfabok.com
http://zsoltfabok.com

